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ABSTRACT 

The major mechanical shortcoming of metallic glasses is their limited ductility at room 

temperature. Monolithic metallic glasses sustain only a few percent plastic strain when subjected 

to uniaxial compression and essentially no plastic strain under tension. Here we describe a room 

temperature deformation process that may have the potential to overcome the limited ductility of 

monolithic metallic glasses and achieve large plastic strains. By subjecting a metallic glass 

sample to cyclic torsion, the glass is brought to the yield surface; the superposition of a small 

uniaxial stress (much smaller than the yield stress) should then produce increments in plastic 

strain along the tensile axis. This accumulation of strain during cyclic loading, commonly known 

as ratcheting, has been extensively investigated in stainless and carbon steel alloys, but has not 

been previously studied in metallic glasses. We have successfully demonstrated the application 

of this ratcheting technique of cyclic torsion with superimposed tension for polycrystalline 

Ti–6Al–4V. Our stability analyses indicate that the plastic deformation of materials exhibiting 

elastic–perfectly plastic constitutive behavior such as metallic glasses should be stable under 

cyclic torsion, however, results obtained thus far are inconclusive. 

STABILITY ANALYSIS 

The ratcheting process proposed here for metallic glasses will achieve large plastic strains 

only if the torsional deformation that is imposed is stable after yielding has occurred. For this 

reason, we now consider the relationship between the applied torque and the angle of twist after 

yielding has commenced. 

During pure torsional deformation under rotational control, one end of a cylindrical 

sample of radius R  and length L  is twisted by an angle q  relative to the fixed end. The shear 
rq

strain g  is given by g = , where r is the radius at which the strain is to be evaluated. The
L 

shear stress t  in the elastic core is computed as t = m g  , where m  is the shear modulus of the 
mq

material. Thus t = r , and the maximum shear stress occurs at the surface of the cylinder
L 

where r = R. 

The applied torque in a sample subjected to pure shear is found by integrating 
R 

T = Ú (t 2pr dr  ) r .  (1)  
0 

The applied torque Ty  at which yielding commences is calculated by substituting for t  with 

q =q y , the critical angle of twist for yielding, and performing the integration, 
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where the shear yield strength is given by ty = R. Assuming elastic–perfectly plastic

L 
behavior for metallic glasses, the shear stress t  increases linearly from the center of the cylinder 

to the elastic–plastic boundary, which will be denoted as the radius where r = a , and is equal to 

t  for r > a . The location of the elastic–plastic boundary is given byy

t (r = a) = ty = 
m q

a ,  (3)  
L 

such that 
t Lya = .  (4)  
m q  

At the surface of the cylinder where the material first yields, 
m qyt = R.  (5)  y L 

Substituting Equation 5 for ty  in Equation 4, it is convenient to write 

qya = R .  (6)  
q 

Thus when q =q y , a = R, and when q > qy , a < R . The applied torque T  after yielding 

commences is given by 
a R 

T = Ú(t 2pr dr  ) r + Ú(t y 2pr dr  ) r .  (7)  
0 a 

Substituting for t  in Equation 7 and performing the integration, 

3T = 
p m q

a 4 + 
2p

t y (R3 - a ) .  (8)  
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Substituting 

m
= 

t y 
from Equation 5 and a = R  from Equation 6, we find
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A plot of the applied torque T  versus the angle of twist q  for pure shear is shown in Figure 1(a). 

Thus we see that if the elastic–perfectly plastic constitutive law holds, the applied torque 

continues to increase after yielding, and stable torsional deformation occurs. 

Yielding is characterized by the initiation and propagation of shear bands. It is possible 

that the shear bands that form in the plastic zone at the surface of the cylinder during yielding 

transform to cracks [1]. In this case, the plastic zone would not be able to support the applied 

shear stress, and the applied torque would decrease with increasing q . It is necessary to calculate 

the relationship between the torque T  and the angle of twist q  after yielding if cracking occurs 

in order to determine whether the torsional deformation would be stable. If the plastic zone 

supports none of the shear stress, then when the material has yielded and q > qy , the applied 



torque would be supported only by the elastic core. In this case, the second term of Equation 7 is 

equal to zero, and the applied torque is given by 
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m q  
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Substituting 
m 
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 from Equation 5, a = 
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Equation 12 is valid only for q > qy . The applied torque T  as a function of the angle of twist q  is 

shown in Figure 1(b) for the case in which the shear bands that form after yielding in pure shear 

transform to cracks and the plastic zone does not support any of the applied torque. In contrast to 

the results of Figure 1(a), the applied torque decreases when q > qy . 
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Figure 1. (a) A plot of the applied torque T versus the angle of twist q for pure shear 

assuming elastic–perfectly plastic material behavior. (b) A plot of the applied torque T versus 

the angle of twist q for pure shear assuming that the shear bands that form after yielding 

transform to cracks and the plastic zone does not support any of the applied torque. 

If the shear bands that form upon yielding transform to cracks when q > qy , the torque 

needed to enforce continued torsional deformation would fall with increasing torsional 

displacement according to Equation 12. This expression for the applied torque T  assumes that 

the testing machine twisting the sample is perfectly rigid. This deformation would be stable only 

if the testing system is stiff enough to twist the sample under these conditions. We consider 

twisting the sample with a testing machine having a finite torsional stiffness k , which can bem 

dT 
written k = . For such a system, the total torsional displacement can be expressed asm dqm 

= q +q , where q  is the twist of the sample and qm  is the twist accommodated by theq total m 

machine. If the sample suddenly twists by a small amount dq  under displacement control, then 

= 0 = dq + dqm , (13) dq total 
and 



dq = -dq . (14) m 

This causes the applied torque on the sample to change by 

dT = kmdqm = -kmdq . (15) 

The torsional resistance of the sample also changes. Following Equation 12, the torque Tflow 

required to maintain the shear stress at t y  at the elastic–plastic boundary for the case of a testing 

Êqy ˆ
3 

machine with a finite torsional stiffness is given by Tflow = Ty Ë
Á 
q
˜
¯

, and thus the torsional 

resistance of the sample changes by 

i Êqy ̂  
4 

dq , (16) dTflow = -3ks Ë
Á 
q ¯
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where ks
i = 

Ty 
is the initial torsional stiffness of the sample. If dT  is more negative than dTflow , 

q y
then the torsional flow process is stable. For such stable flow, the applied torque will have fallen 

below the torsional resistance. Thus the condition for stable flow is 

(17) dT < dTflow . 

Substituting for dT  and dTflow  from Equations 15 and 16, 
4
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and simplifying, 
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k > 3ks
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If this condition is met when q = qy , then it will also be satisfied for q > qy  since the term on the 

right in Equation 19 decreases with increasing q . Thus the absolute condition for stable flow can 

be written 

k > 3ki . (20) m s 

For unstable flow the torsional resistance falls more quickly that the applied torque so that 

equilibrium will never be re–established. 

EXPERIMENTAL RESULTS 

Ratcheting of Ti–6Al–4V 

According to the stability analysis presented above for an elastic–perfectly plastic 

material, it should be expected that torsional deformation of an elastic–plastic material that 

exhibits work hardening such as polycrystalline Ti–6Al–4V would also be stable. An 

axial–torsional MTS servohydraulic machine with hydraulic sample grips was used to impose 

multi–axial deformation on polycrystalline samples of Ti–6Al–4V. A load cell with 111 kN axial 

capacity and 1410 N•m torsional capacity was used. The load cell was calibrated to operate in the 

±9 kN (±2000 lb) and ±115 N•m (1000 in•lb) ranges. Displacements were measured by linear 

and rotational variable differential transformers attached to the actuator. Cylindrical dogbone 

specimens with radii of 2 mm and gage lengths of 20 mm were used. The yield strength of the 



Ti–6Al–4V was determined to be 1040 MPa from uniaxial tension testing. To perform the

ratcheting experiment, the Ti–6Al–4V was loaded to a uniaxial tensile stress of 530 MPa at a rate

of 20 N/s. The axial load was maintained under load control during the subsequent torsional

cycling. Under load control, the displacement of the sample is not constrained in the axial

direction. The sample was then twisted under rotational control (±12°) with a sinusoidal

waveform at a rate of 0.05°/second until the sample yielded in shear at surface shear stresses of

650 MPa. The axial displacement as a function of the applied torque is shown in Figure 2. Note

that although the stress in the axial direction is not large enough to cause yielding, a permanent

displacement in the axial direction of 0.32 mm is retained after the sample is unloaded. This

displacement corresponds to a plastic strain of 1.6% and demonstrates the success of the

ratcheting technique.
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Figure 2. Axial displacement versus torque for Ti–6Al–4V.

Ratcheting of Zr41.2Ti13.8Cu12.5Ni10.0Be22.5

Similar ratcheting experiments were performed on samples of the alloy

Zr41.2Ti13.8Cu12.5Ni10.0Be22.5 (Vitreloy 1). Cylindrical dogbone specimens with radii of 1.5 mm

and gage lengths of 20 mm were electrode discharge machined (using low power and water

cooling to prevent crystallization) from cast rods (12.5 mm diameter) provided by Liquid Metal

Technologies, Inc. A uniaxial tension stress of 920 MPa was imposed and maintained constant

under load control while the sample was cycled in shear. As with the titanium samples, this stress

is nominally half of the tensile yield strength (1.9 GPa for Vitreloy 1) [2]. The sample was then

cycled in torsion (0.05°/second under rotational control) to surface shear stresses of nominally

1000 MPa. The shear modulus was determined to be 31 GPa, in close agreement with the

previously reported value of 34 GPa for the same alloy [2]. No corrections for the finite torsional

stiffness of the machine were performed in order to determine the shear modulus of the material,

indicating that the machine is exceptionally stiff in torsion and meets the stability condition

expressed in Equation 20. Thus we should expect stable torsional deformation to occur during

ratcheting of Vitreloy 1. The sample failed abruptly during elastic loading after several cycles,

however, at a surface shear stress of 870 MPa even though surface shear stresses as large as

925 MPa were sustained earlier in the test, indicating that flaws in the samples may have

precipitated the failure. Figure 3(a) is a plot of axial displacement versus torque for

Zr41.2Ti13.8Cu12.5Ni10.0Be22.5 that, in contrast to Figure 2, clearly indicates that the ratcheting

technique was not successful in this case.



Figure 3(b) is a scanning electron micrograph depicting the surface damage caused by the

electrode discharge machining process. In this experiment, these flaws have characteristic sizes

on the order of tenths of millimeters. The cylindrical gage sections of the ratcheting samples

were not polished after machining. Having observed these flaws, it is not surprising that

premature failure occurred. Thus the results of the ratcheting experiments on Vitreloy 1 are

inconclusive. The stability analysis for torsional deformation indicates that it should be possible

to achieve substantial plastic strains through a ratcheting process for a metallic glass with

elastic–perfectly plastic constitutive behavior. The quality of the surface finish of the samples

used in these experiments, however, was too poor to yield meaningful results. Ideally samples

should be cast in the final form for the test geometry if these experiments are to be performed

again.
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Figure 3. (a) Axial displacement versus torque for Zr41.2Ti13.8Cu12.5Ni10.0Be22.5. (b) A scanning

electron micrograph of one of the flaws on the surface of the sample due to the machining

process.
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